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SUMMARY

The Hippo pathway is crucial in organ size control,
and its dysregulation contributes to tumorigenesis.
However, upstream signals that regulate the mam-
malian Hippo pathway have remained elusive. Here,
we report that the Hippo pathway is regulated by
G-protein-coupled receptor (GPCR) signaling.
Serum-borne lysophosphatidic acid (LPA) and sphin-
gosine 1-phosphophate (S1P) act through G12/13-
coupled receptors to inhibit the Hippo pathway
kinases Lats1/2, thereby activating YAP and TAZ
transcription coactivators, which are oncoproteins
repressed by Lats1/2. YAP and TAZ are involved in
LPA-induced gene expression, cell migration, and
proliferation. In contrast, stimulation of Gs-coupled
receptors by glucagon or epinephrine activates
Lats1/2 kinase activity, thereby inhibiting YAP func-
tion. Thus, GPCR signaling can either activate or
inhibit the Hippo-YAP pathway depending on the
coupled G protein. Our study identifies extracellular
diffusible signals that modulate the Hippo pathway
and also establishes the Hippo-YAP pathway as a
critical signaling branch downstream of GPCR.
INTRODUCTION

How organ size is controlled in multicellular organisms remains

a fundamental biological question. The mammalian target of

rapamycin (mTOR) pathway and the Hippo pathway have been

proposed to control organ size by affecting cell size and cell

number, respectively (reviewed in Lee et al., 2007; Zhao et al.,

2010a). The Hippo pathway was initially defined by genetic

studies in Drosophila, wherein mosaic mutations of Hippo

pathway genes resulted in tissue overgrowth (reviewed in Pan,

2007). Genetically modified mouse models demonstrate that
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function of the Hippo pathway in organ size regulation is

conserved in mammals (reviewed in Zhao et al., 2010a).

The kinase cascade of MST1/2 and Lats1/2 represents a core

component of the mammalian Hippo pathway. MST1/2, in

complexwith a regulatory protein salvador (Sav1), phosphorylate

and activate Lats1/2 kinases, which also form a complex with

a regulatory protein Mob1 (Zhao et al., 2010a). The transcription

coactivator Yes-associated protein (YAP) is amajor downstream

effector of the Hippo pathway (Dong et al., 2007). Lats1/2 inhibit

YAP by direct phosphorylation at S127, which results in YAP

binding to 14-3-3 and cytoplasmic sequestration (Dong et al.,

2007;Haoet al., 2008; Zhaoet al., 2007). YAPactsmainly through

TEAD family transcription factors to stimulate expression of

genes that promote proliferation and inhibit apoptosis (Zhao

et al., 2008). Phosphorylation of YAP S381 by Lats1/2 kinases

can also promote its ubiquitination-dependent degradation

(Zhao et al., 2010b). TAZ is a YAP paralog in mammals similarly

regulated by the Hippo pathway (Lei et al., 2008).

In transgenic mice, YAP promotes liver enlargement in a

reversible manner (Camargo et al., 2007; Dong et al., 2007), sug-

gesting that organ size control relies on tight regulation of Hippo

pathway activity. Sustained YAP expression results in hyper-

plasia and eventual tumor development (Dong et al., 2007).

Genetic ablation of Hippo pathway components in mice also

leads to tumor formation (Benhamouche et al., 2010; Cai et al.,

2010; Lee et al., 2010; Lu et al., 2010; Xu et al., 2009; Zhang

et al., 2010; Zhou et al., 2009). Moreover, abnormal activation

of YAP and TAZ has been associated with human cancers (Over-

holtzer et al., 2006; Steinhardt et al., 2008; Zender et al., 2006;

Zhao et al., 2007), suggesting an important role for the Hippo

pathway in tumorigenesis.

Despite extensive studies that have identified many upstream

components of the Hippo pathway, extracellular ligands and cell

surface receptors regulating the Hippo pathway have remained

elusive. Although CD44 has been proposed to impact the Hippo

pathway (Xu et al., 2010), further studies are required to demon-

strate the physiological relevance of CD44 in Hippo pathway

regulation. In this study, we report the identification of various

GPCRs and their agonists as Hippo pathway regulators.
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Figure 1. Serum Induces Dephosphorylation of YAP and TAZ

(A and B) Serum induces YAP and TAZ dephosphorylation. HEK293A cells

were starved in serum-free medium for 12 hr and then stimulated with 10%

FBS for the indicated times (A) or with different concentrations of FBS for 1 hr

(B). Cell lysates were subjected to immunoblotting with the indicated anti-

bodies. Where indicated, gels containing phos-tag were employed for

assessment of YAP phosphorylation status (A, bottom). l.e., long exposure.

(C) Serum reversibly regulates YAP/TAZ phosphorylation. Serum-starved

HEK293A cells were treated with 10% FBS for 1 or 2 hr as indicated. In the last

three lanes, after 1 hr stimulation, FBS was removed for 1/4, 1/2, or 1 hr as

indicated by upward arrows.

(D) Serum induces YAP nuclear localization in HEK293A and MCF10A cells.

YAP subcellular localization was determined by immunofluorescence staining

for endogenous YAP (green) along with DAPI for DNA (blue). Serum stimulation

(10% FBS for 1 hr) is indicated.

Data are representative of at least three independent experiments. See also

Figure S1.
Activation of Gs-coupled receptors by epinephrine or glucagon

stimulation increases Lats1/2 kinase activity, thus resulting in

inhibition of YAP function. In contrast, activation of G12/13- or

Gq/11-coupled receptors by lysophosphatidic acid (LPA) or

sphingosine 1-phosphate (S1P) inhibits Lats1/2 kinases, result-

ing in YAP activation. Our study demonstrates an important

role for the Hippo-YAP pathway in mediating the physiological

functions of GPCRs and their corresponding extracellular

ligands.

RESULTS

Serum Induces Dephosphorylation and Nuclear
Localization of YAP
In search of signals that might regulate YAP phosphorylation, we

found that, in HEK293A cells, YAP was highly phosphorylated

following serum starvation, and addition of serum resulted in a

rapid decrease in YAP phosphorylation as determined by immu-

noblotting using a phospho-YAP antibody (S127) and differential

migration on phos-tag-containing gels (Figure 1A). This phenom-

enon was observed in multiple cell lines, including HeLa, RC3,

SK-Mel-28, SF268, U2OS, and MCF10A (Figures S1A–S1D

available online). The effect of serum on YAP phosphorylation

was transient, as YAP phosphorylation was partially recovered

4 hr after serum stimulation (Figure 1A). Serum also caused a

mobility shift of TAZ, suggesting that TAZ was also dephos-

phorylated in response to serum (Figure 1A). Along with

decreased phosphorylation, protein levels of both YAP and

TAZ, especially TAZ, were increased by serum, consistent with

previous observations that phosphorylation promotes YAP/

TAZ degradation (Liu et al., 2010; Zhao et al., 2010b). In contrast,

protein levels of the MST1 and Lats1 were unaffected by serum

stimulation (Figure 1A).

The effect of serum on YAP/TAZ phosphorylation was dose

dependent. YAP dephosphorylation was evident when as

little as 0.5% serum was added (Figure 1B). Moreover, serum-

induced YAP dephosphorylation was rapid (visible at 5 min;

Figure S1B) and reversible (Figure 1C), indicating that the effect

of serum on YAP phosphorylation is likely a direct signaling

event. Phosphorylation of YAP at S127 leads to YAP cytoplasmic

localization (Zhao et al., 2007). Consistently, serum caused

a significant nuclear accumulation of YAP in both HEK293A

and MCF10A cells (Figure 1D). These data demonstrate that a

component in serum could potently activate YAP by inducing

dephosphorylation and nuclear localization.

Identification of LPA as a YAP-Activating Component
in Serum
To rule out the possibility that the YAP/TAZ activating compo-

nent(s) was present in a particular batch of serum, we examined

serum from different sources and found that all could induce

YAP dephosphorylation (Figure 2A). In contrast, a defined

embryonic stem cell culture medium (mTeSR1) that contains

several growth factors showed no effect on YAP phosphoryla-

tion, although phosphorylation of extracellular-signal-regulated

kinases (ERKs) was induced (Figure 2A), suggesting that growth

factors present in mTesR1 do not regulate YAP phosphorylation.

Moreover, we tested several growth factors, including insulin,
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Figure 2. Characterization of Serum

Factor(s) Responsible for YAP/TAZ

Dephosphorylation

(A) Serum contains a YAP-activating activity.

HEK293A cells were treated with 10% of different

brands of serum: FBS (from Omega Scientific or

Hyclone [HC]), fetal calf serum (FCS), horse serum

(HS), or 10% mTesr1. Total cell lysates were

subjected to immunoblotting.

(B) The YAP-activating activity in serum is pro-

tease resistant. FBS were pretreated with pronase

E or heat-inactivated pronase E (HI). The effec-

tiveness of pronase E was demonstrated by

Coomassie blue staining (left). Cells were stimu-

lated with control or pronase-E-treated FBS.

(C) YAP-activating activity in BSA. Different BSA

preparations (from Sigma Aldrich) were used to

treat HEK293A cells. A3294 was prepared by heat

shock; A7073 fraction V (FV) and A6003 (fatty acid

[FA]-free) were prepared by ethanol precipitation;

and A2058 was prepared by chromatography.

Protein contents of different BSA preparations

were similar, as indicated by Coomassie blue

staining (data not shown). Serum-starved

HEK293A cells were treated with 1 or 10 mg/ml

BSA for 1 hr before harvest.

(D) Charcoal treatment depletes the YAP-acti-

vating activity in serum. 10% or 1% of regular or

charcoal-stripped (Ch) FBS was used to stimulate

serum-starved HEK293A cells for 1 hr.

(E) The YAP-activating activity in FBS is sensitive

to organic extraction under acidic conditions. FBS

was extracted using chloroform, methanol, or

different ratios of chloroform and methanol

mixture (CM, in the presence of HCl or NaOH).

Organic solvent was evaporated, and materials

extracted were dissolved in 2mg/ml fatty acid-free

BSA (FAF) and used to treat cells.

(F) LPA induces YAP dephosphorylation.

HEK293A cells were treated with 100 mM of

various lipids. Full names of lipids used are shown

in Extended Experimental Procedures.

Data are representative of at least three indepen-

dent experiments. Also see Figure S2.
EGF, FGF, and PDGF, and found that their evoked signaling

pathways were not involved in YAP/TAZ activation (Figures

S1E and S1F), indicating that the active component(s) commonly

present in serum is unlikely a general growth factor. Further, inhi-

bition of MEK by U0126, PI3K by wortmannin, mTOR by torin,

and p38 by SB253580 had no effect on the ability of FBS to

induce dephosphorylation of YAP/TAZ (Figures S1G and S1H).

In order to determine whether a protein component in serum

is responsible for YAP/TAZ activation, we treated serum with

pronase E, which effectively degraded serum proteins (Fig-

ure 2B). Interestingly, we found that the activity in serum that

induces YAP/TAZ dephosphorylation was largely unaffected

by pronase treatment (Figure 2B). Moreover, the YAP/TAZ-de-

phosphorylating activity was resistant to heating and dialysis

(data not shown). These observations indicate that the YAP/

TAZ-activating factor(s) in serum is not a protein but is likely

a macromolecule or a small molecule tightly associated with a

macromolecule.
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Bovine serum albumin (BSA) was included as a control in our

studies. Surprisingly, BSA also potently decreased YAP/TAZ

phosphorylation (Figure 2C). BSA is a major serum component

that functions as a carrier for many molecules. We therefore

tested different BSA preparations on YAP/TAZ phosphorylation.

Whereas some BSA preparations induced YAP/TAZ dephos-

phorylation, fatty acid-free BSA and fraction V BSA displayed

no activity toward YAP/TAZ phosphorylation (Figure 2C). Similar

to fatty acid-free BSA, fraction V BSA contains fewer lipids

because it is prepared by ethanol precipitation. These observa-

tions suggest that a hydrophobic compound in BSA, possibly

a lipid, is responsible for inducing YAP/TAZ dephosphorylation.

In support of this hypothesis, charcoal-stripped FBS, which

has reduced lipid content, had a markedly decreased ability to

induce YAP dephosphorylation (Figure 2D).

To further characterize the YAP/TAZ-dephosphorylating

activity in FBS, we performed a series of extraction experiments

using different organic solvents (Quehenberger et al., 2010).
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Figure 3. LPA and S1P Activate YAP/TAZ by Dephosphorylation

(A) HEK293A cells were treated with 1 mM LPA for the indicated times. Cell

lysates were subjected to immunoblotting with the indicated antibodies.

(B) Serum and LPA stimulate YAP interaction with TEAD1 but inhibit YAP

interaction with 14-3-3. Cells were treated with LPA or serum as indicated.

Cell lysateswere subjected to immunoprecipitation (IP) with control IgG or YAP

antibody. The co-immunoprecipitated TEAD1 and 14-3-3 were detected by

immunoblotting.

(C) LPA treatment (1 mM for 1 hr) induces YAP nuclear localization in HEK293A

and MCF10A cells.

(D) HEK293A cells were treated with 1 mM S1P for the indicated times.

Data are representative of at least three independent experiments. Also see

Figures S2 and S3.
Chloroform failed to extract the activity, whereas methanol or

ethanol could extract the activity (Figure 2E and data not shown).

Moreover, a chloroform/methanol mixture effectively extracted

the activity only at low pH, but not at high pH (Figure 2E). These

results suggest that the active ingredient in serum is an amphi-
philic molecule with an acidic group. At low pH, the acidic group

in the active component is not charged, allowing it to be ex-

tracted by chloroform/methanol. In contrast, at high pH, the

acidic group in the active component is charged and thus could

not partition into the organic solvents. Phospholipids, particu-

larly lysophospholipids, which have hydrophobic tails with

phosphate heads, represent the best known examples of

amphiphilic-signaling molecules. Thus, we tested whether phos-

pholipids might induce YAP dephosphorylation. Among the

phospholipids tested, we found that phosphatidic acid (PA),

LPA, and a mixture of PA and phosphoinositol strongly induced

dephosphorylation of YAP/TAZ (Figure 2F).

LPA and S1P Stimulate YAP/TAZ Activity
LPA is a family of glycerophospholipid-signaling molecules

present in all tissues and serum (Choi et al., 2010). Low concen-

trations of LPA were effective in inducing YAP/TAZ dephosphor-

ylation, with 0.01 mM and 0.1 mM inducing partial and complete

YAP/TAZ dephosphorylation, respectively (Figure S2A), indi-

cating that LPA could activate YAP/TAZ at physiological (submi-

cromolar) concentrations (Choi et al., 2010). Next, we examined

various LPA isoforms with different lengths and degrees of satu-

ration of the fatty acid tails and found that all tested isoforms

could induce YAP/TAZ dephosphorylation (Figure S2B). We

subsequently tested PA and found that a much higher concen-

tration, 100 mM, was needed to induce YAP dephosphorylation

(Figure S2C). Because PA can be converted to LPA by phospho-

lipases and is significantly less potent than LPA, our data

suggest that PAmay not directly induce YAP dephosphorylation.

Rather, the conversion of PA to LPA or residual LPA contamina-

tion in the PA preparation might contribute to the activity de-

tected at high concentrations of PA (Figure 2F).

Similar to serum, LPA induced rapid YAP/TAZ dephosphoryla-

tion at S127 (Figure 3A). Lats can phosphorylate YAP on five

serine residues, including S381, with phosphorylation at S381

priming S384 phosphorylation by casein kinase (Zhao et al.,

2010b). Indeed, we found that phosphorylation of S381/384

was also decreased in response to LPA treatment (Figure S3A).

YAP S127 phosphorylation is required for 14-3-3 binding and

cytoplasmic retention. Consistent with its ability to promote

YAP dephosphorylation, LPA treatment attenuated YAP-14-3-3

interaction (Figure 3B) and induced YAP nuclear localization (Fig-

ure 3C). The subcellular localization of YAP was reversible, as

YAP protein redistributed into cytoplasm 30 min after LPA with-

drawal (Figure S3B). LPA also enhanced the interaction between

YAP and the nuclear-localized TEAD1, a transcription factor

target of YAP/TAZ (Figure 3B).

The S1P group of lysophospholipids has overlapping physio-

logical functions with LPA (Rosen et al., 2009). Similar to LPA,

S1P potently induced YAP/TAZ dephosphorylation (Figures 3D

and S2D). Taken together, our data demonstrate that LPA and

S1P are activators of YAP/TAZ.

YAP and TAZ Are Involved in LPA-Induced Gene
Expression, Cell Migration, and Cell Proliferation
As a transcription coactivator, the major function of YAP/TAZ is

to stimulate gene expression. CTGF, Cyr61, and ANKRD1 are

well-characterized YAP target genes. Indeed, LPA, S1P, and
Cell 150, 780–791, August 17, 2012 ª2012 Elsevier Inc. 783
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Figure 4. YAP/TAZ Are Required for LPA

Functions and Are Regulated by LPA

Signaling

(A) YAP/TAZ are required for LPA to induce gene

expression. mRNA levels of the indicated genes

were measured by quantitative PCR. LPA (1 mM)

treatment was for 1 hr. HEK293A cells with stable

knockdown of YAP/TAZ or control cells were

used.

(B) Knockdown of YAP/TAZ blocks LPA-induced

cell migration. Migration of MCF10A cells trans-

fected with control siRNA or YAP/TAZ siRNA was

assessed by transwell cell migration assays.

(C) YAP/TAZ is required for LPA to stimulate cell

proliferation. Control and YAP/TAZ knockdown

HEK293A cells were cultured in the absence of

FBS and treatedwith or without 10 mMLPA for 0, 1,

2, or 3 days as indicated. LPA was replenished

every day. Cell number was then counted.

(D) Hyperplasia caused by transgenic LPA1 and

LPA2 expression. Hematoxylin and eosin staining.

(E) LPA receptor transgenic mouse tissues exhibit

increased TAZ nuclear localization. Immunofluo-

rescence staining for TAZ (red) and DNA (blue).

(F) LPA receptor transgenic mouse tissues exhibit

decreased YAP/TAZ phosphorylation. Sample in

each lane was from an individual mouse.

Mammary tissues were analyzed in (D–F).

Data are representative of at least three indepen-

dent experiments. Error bars represent SD; n = 3.

Also see Figure S4.
serum treatment induced the expression of CTGF (Figures 1A,

3A, and 3B). Further mRNA and/or protein levels of CTGF,

Cyr61, and ANKRD1were also increased in cells stably express-

ing ectopic LPA receptor (LPA1) and autotaxin (ATX, an LPA-

producing enzyme; Figures S4A and S4B). To determine the

function of YAP/TAZ in LPA-induced gene expression, YAP

and TAZ were knocked down using shRNAs (Figure S4C). We

found that knockdown of YAP/TAZ strongly repressed the

mRNA induction of CTGF, Cyr61, ANKRD1, TAGLN, EDN1,

and PPP1R3B by LPA (Figure 4A), supporting a role of YAP/

TAZ in LPA-induced gene expression. However, the expression

of two other LPA-inducible genes, EGR3 and EGR4, was not

dependent on YAP/TAZ (Figure 4A). LPA is known to activate

multiple signaling pathways, including ERK (Figure 3A). Indeed,

both EGR3 and ERG4 are regulated by ERK activation (Li

et al., 2007; Ludwig et al., 2011).

LPA is known to stimulate cell migration and has been impli-

cated in tumor metastasis (Shida et al., 2003). We examined

the effect of YAP/TAZ knockdown in MCF10A cells (Figure S4D)

on cell migration using a transwell migration assay. We found
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that LPA-stimulated cell migration was

strongly inhibited in YAP/TAZ double-

knockdown cells (Figure 4B). In a

wound-healing assay, YAP/TAZ knock-

down also blocked the effect of LPA on

cell migration (Figure S4E). Another well-

characterized function of LPA is to

promote cell proliferation (van Corven
et al., 1989). We found that HEK293A cells displayed little

proliferation in the absence of serum, and addition of LPA

induced cell proliferation in control cells, but not in YAP/TAZ

double-knockdown cells (Figure 4C). These data demonstrate

important roles for YAP/TAZ in mediating physiological functions

of LPA.

It has been shown that TAZ expression is elevated in invasive

human breast cancers (Chan et al., 2008), and overexpression of

the LPA receptor in mousemammary glands causes hyperplasia

and tumor formation (Liu et al., 2009). To determine whether LPA

receptors regulate YAP/TAZ in vivo, we analyzed an LPA

receptor transgenic mouse model. As expected, LPA1 and

LPA2 transgenic mammary tissues exhibited massive over-

growth (Figure 4D). In contrast to the cytoplasmic localization

of TAZ in control tissues, TAZ was enriched in the cell nucleus

of LPA1 and LPA2 transgenic tissues (Figures 4E and S4F). Addi-

tionally, YAP/TAZ were dephosphorylated in LPA receptor trans-

genic mammary tissues and tumors (Figure 4F). Moreover, in

LPA2 tumors, the protein levels of YAP/TAZ and their target

gene, CTGF, were significantly upregulated (Figure S4G). The



Figure 5. LPA and S1P Repress Lats Kinase

Activity

(A) MST1/2 are not required for LPA-induced YAP

dephosphorylation and CTGF induction in MEF

cells. WT or knockout MEF cells at similar density

were untreated or treated with 1 mM LPA for 1 hr.

YAP phosphorylation was assessed by immuno-

blotting in the presence of phos-tag.

(B) Lats kinase activity is inhibited by LPA.

Endogenous Lats1 was immunoprecipitated

from HEK293A cells that had been treated with

LPA at various times and doses of LPA, and Lats1

kinase activity was determined using GTS-YAP as

a substrate.

(C) Lats phosphorylation is repressed by LPA. Cell

lysates from control or LPA-treated (1 mM for 1 hr)

cells were divided into two parts, one for IgG IP and

the other for Lats1 IP. Endogenous Lats1 was

immunoprecipitated and probed with phospho-

specific antibodies.

(D) Lats overexpression suppresses the effect of

LPA on YAP phosphorylation. HEK293A cells were

cotransfected with Flag-YAP and HA-Lats2 or HA-

Mob. At 1 day after transfection, cells were serum

starved for 24 hr and then treated with 1 mM LPA

for 1 hr.

Data are representative of at least three indepen-

dent experiments. Also see also Figure S5.
above observations support a role of LPA signaling in promoting

YAP/TAZ dephosphorylation and activation in vivo.

LPA Inhibits Lats1/2 Kinase Activity
To determine whether LPA acts through the Hippo pathway core

components MST and Lats kinases to regulate YAP phosphory-

lation, we examined the effect of LPA on MST1/2 and Lats1/2

kinase activities. We found that LPA and serum had no detect-

able effect on MST1 kinase activity as visualized by in vitro

phosphorylation of Mob, a known MST1/2 substrate, and

MST1 autophosphorylation (Figure S5A). Similarly, the phos-

phorylation of MST2 at T180 was not changed following LPA

treatment (Figure S5B). In addition, LPA induced YAP dephos-

phorylation in MST1/2 double-knockout MEF cells (Figure 5A),

indicating that MST1/2 are not required for YAP regulation by

LPA in MEF cells.

Next, we measured Lats1 kinase activity and found that Lats1

kinase activity was rapidly inhibited by serum or LPA treatment

(Figures 5B and S5C). The inhibition of Lats1 kinase activity by

serum and LPA correlated with the repression of endogenous

YAP phosphorylation in both dose- and time-dependent

manners (Figure S5C), suggesting that LPA and serum decrease

YAP phosphorylation by inhibiting Lats1/2 kinase activity.

Consistent with the observed Lats inhibition, phosphorylation

levels of Lats1 at activation loop (S909) and hydrophobic motif
Cell 150, 780–79
(T1079), both of which determine Lats

activity, were decreased upon LPA

treatment (Figure 5C). Moreover, the

effect of LPA on YAP phosphorylation

was abolished by overexpression of

Lats2 (Figure 5D), reinforcing the role of
Lats1/2 inhibition in LPA-induced YAP activation. Our data

show that LPA signaling acts upstream of Lats1/2 and parallel

to MST1/2.

LPA/S1P Act through G12/13-Coupled Receptors
and Rho to Induce YAP/TAZ Dephosphorylation
LPA binds to a family of GPCRs known as LPA receptors

(LPA1–6) to initiate intracellular signaling (Choi et al., 2010).

LPA1 was highly expressed, and LPA3 was detectable in

HEK293A cells compared to other LPA receptors (Figure S6A).

To determine whether LPA receptors were required for LPA-

induced YAP/TAZ activation, we treated HEK293A cells with

Ki16425, which preferentially inhibits LPA1 and LPA3 (Ohta

et al., 2003). Ki16425 treatment blocked LPA-induced, but not

S1P-induced, dephosphorylation of YAP/TAZ (Figure 6A), sug-

gesting that LPA1 and LPA3mediate LPA-induced YAP dephos-

phorylation in HEK293A cells. Consistently, LPA-induced YAP

dephosphorylation was significantly blocked by stable knock-

down of LPA1 and LPA3 (Figure S6B). Furthermore, ectopic

expression of LPA and S1P receptors was sufficient to induce

YAP nuclear localization and dephosphorylation (Figures 6B

and S6C). These data suggest that the effect of LPA or S1P on

the Hippo-YAP pathway ismediated by their cognate transmem-

brane receptors. Of note, Ki16425 partially inhibited the ability of

serum to repress YAP/TAZ phosphorylation, particularly at low
1, August 17, 2012 ª2012 Elsevier Inc. 785



Figure 6. LPA and S1P Modulate YAP/TAZ

through Their Membrane Receptors and

Rho GTPases

(A) LPA1/3 antagonist Ki16425 completely blocks

LPA and partially blocks serum effects on YAP/

TAZ phosphorylation. HEK293A cells were treated

with Ki16425 (10 mM) or DMSO control for 30 min

as indicated, and then cells were stimulated with

S1P, LPA, or FBS for 1 hr.

(B) LPA and S1P receptor overexpression pro-

motes YAP nuclear localization. Cells were trans-

fected with HA-tagged LPA1, LPA4, or S1P2 as

indicated. The transfected receptors were de-

tected by HA antibody (red), and endogenous YAP

was detected by YAP antibody (green). Note that

the receptor-expressing red cells have higher

nuclear YAP.

(C) Knockdown of G12 and G13 blocks the effect

of LPA on YAP phosphorylation. HEK293A cells

were transfected with control siRNA, a pool of

siRNAs for G12 and G13, or a pool of siRNAs for

Gq and G11; serum was removed at 48 hr.

Following 16 hr serum starvation, cells were

treated with 1 mM LPA for 1 hr.

(D) Inactivation of Rho by C3 toxin prevents YAP/

TAZ dephosphorylation by LPA, S1P, and serum.

HEK293A cells were pretreated with 2 mg/ml C3

for 4 hr and then stimulated with LPA, S1P, or FBS

for 1 hr.

(E) Disruption of actin cytoskeleton prevents YAP/

TAZ dephosphorylation by LPA or serum.

HEK293A cells were pretreated with 1 mg/ml LatB

for 30 min and then stimulated with LPA or serum

for 1 hr.

Data are representative of at least three indepen-

dent experiments. Also see Figure S6.
serum concentrations (0.2%) (Figure 6A). The Ki16425-insensi-

tive YAP-dephosphorylating activity in serum could be due to

S1P or other factors.

Both LPA and S1P receptors activate several heterotrimeric G

proteins to initiate intracellular signaling pathways. To determine

whether Ga proteins are involved in YAP regulation, we tested

the effect of Ga overexpression on YAP phosphorylation. Our

data indicate that overexpression of active G12/13 could induce

YAP dephosphorylation (Figure S6D). Indeed, knockdown of

both G12 and G13 largely blocked LPA-induced YAP dephos-

phorylation (Figure 6C), suggesting that G12/13 play a major

role in mediating LPA signaling to the Hippo pathway.

Rho GTPases are known downstream mediators of G12/13

and LPA. We therefore expressed the RhoA-N19 dominant-

negative mutant and found that it blocked serum-induced YAP

dephosphorylation (Figure S6D). Conversely, expression of the

constitutively active RhoA-L63 mutant induced a robust YAP

dephosphorylation even in the absence of serum (Figure S6D).

Likewise, botulinum toxin C3, a specific inhibitor of Rho

GTPases, not only elevated basal phosphorylation of YAP/TAZ,

but also blocked LPA-, S1P-, and serum-induced YAP/TAZ

dephosphorylation (Figure 6D). These data indicate a critical
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role for Rho in mediating the LPA/S1P signal to YAP. We also

found that cotransfection of active G12, G13, and RhoA

repressed Lats2 kinase activity (Figure S6E).Moreover, inhibition

of LPA1 and LPA3 by Ki16425 and inactivation of Rho GTPases

byC3 treatment effectively blocked Lats1 inhibition by LPA, S1P,

and serum (Figures S6F and S6G). Taken together, these data

support a model wherein both LPA and S1P act through

membrane receptors, G12/13, and Rho GTPases to inhibit

Lats1/2 activity and thereby promote YAP activation.

The major function of Rho GTPases is to regulate cellular actin

dynamics. A role of actin cytoskeleton on the Hippo-YAP

pathway has recently been suggested (Dupont et al., 2011; Fer-

nández et al., 2011; Rauskolb et al., 2011; Sansores-Garcia

et al., 2011; Zhao et al., 2012). We therefore determined whether

changes in the actin cytoskeleton contribute to YAP activation

by LPA. YAP nuclear localization under LPA or S1P treatment

correlated with levels of cellular actin filaments (Figures S3B,

S6H, and S6I). When cells were treated with the actin-disrupting

agent latrunculin B (LatB), the effects of LPA or S1P on YAPwere

blocked (Figures 6E and S6I). These results indicate that LPA

or S1P may regulate Lats kinase activity by modulating actin

cytoskeleton dynamics.



Figure 7. Stimulation of Gs-Coupled GPCRs

Increases YAP Phosphorylation

(A) Epinephrine stimulates YAP phosphorylation.

MDA-MB-231 cells were treated with indicated

concentrations of epinephrine for 1 hr. Phosphor-

ylation of CREBwas determined by immunoblotting

with phospho-CREB-specific antibody (pCREB).

(B) Phosphorylation of YAP from the heart of mice

injected with epinephrine is increased. Samples

from three representative pairs (from strong to

weak induction of YAP phosphorylation) of mice

were shown. Epinephrine is known to increase

blood glucose levels, which are indicated under-

neath each sample.

(C) Dopamine agonist dihydrexidine stimulates YAP

phosphorylation. U2OS cells were treated with

10 mM dihydrexidine for 1 hr. YAP phosphorylation

status was assessed.

(D) Glucagon stimulates YAP phosphorylation.

Primarymouse hepatocyteswere treatedwith 2 mM

glucagon for 1 hr, and YAP phosphorylation status

was determined.

(E) Forskolin induces YAP phosphorylation. MDA-

MB-231 cells were treated with different concen-

trations of Forskolin for 1 hr.

(F) Forskolin induces Lats1 phosphorylation.

Endogenous Lats1 was immunoprecipitated from

control cells and Forskolin (Fsk)-treated (10 mM for

1 hr) HEK293A cells, and protein lysates were

divided into two parts, one for IgG IP and the other

for Lats1 IP. Proteins immunoprecipitated were

probed with phosphospecific antibodies against

S909 and T1079 of Lats1.

(G) A proposed model for GPCRs and G proteins in

the regulation of Lats and YAP/TAZ activities. See

Discussion for details.

Data are representative of at least three indepen-

dent experiments. Also see Figure S7 and Tables

S1 and S2.
Regulation of YAP Phosphorylation by GPCRs
GPCRs represent one of the largest gene families in the human

genome. There are �1,000 GPCRs that are coupled to 15

different Ga proteins (Wettschureck and Offermanns, 2005).

We asked whether other GPCRs, especially those that are not

coupled to G12/13, could modulate YAP/TAZ activity. It is diffi-

cult to test the effect of many GPCR ligands because the expres-

sion of GPCRs is tissue specific, and only a limited number of

receptors are expressed in any given cell line. However, overex-

pression of GPCRs often can activate signaling, as we observed

by the overexpression of LPA receptors (Figures 6B and S6C).

We therefore tested the effect of representative members of

different GPCR subgroups on YAP/TAZ activity by overexpres-

sion. YAP or TAZ phosphorylation was reduced upon overex-

pression of adrenergic receptor a1B, LPA receptors, purinergic

receptors, 5-hydroxytryptamine receptor 4, muscarinic acetyl-

choline receptor M1, adenosine receptor A1A, angiontensin II

receptor, free fatty acid receptor 1, platelet-activating factor

receptor, thromboxane A2, frizzled homolog D4, complement

component 3a receptor 1, estrogen receptor 1, glutamate

receptor metabotropic 2, opioid receptor D1, secretin receptor,
thyroid-stimulating hormone receptor, gastrin-releasing peptide

receptor, melanocortin receptor 1, somatostatin receptor 1,

prostaglandin E receptor 2, and bombesin-like receptor 3 (Table

S1). In contrast, YAP/TAZ phosphorylation was increased by

adrenergic receptor b2, dopamine receptor D1, and glucagon

receptor (Table S1). Our data indicate that GPCRs that activate

G12/13, Gq/11, or Gi/o could repress YAP/TAZ phosphorylation.

On the other hand, GPCRs that mainly activate Gs signaling

could induce YAP/TAZ phosphorylation.

Overexpression of GPCRs could result in nonspecific activa-

tion of Ga that might not occur under physiological conditions.

To further establish the role of specific GPCRs in YAP regulation,

we tested the effect of physiological hormones or GPCR

agonists on YAP/TAZ phosphorylation using cell lines that are

known to express their corresponding receptors. We were

particularly interested in agonists that stimulate Gs-coupled

receptors, as overexpression of Gs-coupled receptors induced

YAP phosphorylation, and their agonists may represent negative

regulators for YAP/TAZ function. In MDA-MB-231 breast cancer

cells, stimulation with epinephrine resulted in a dose-dependent

phosphorylation of YAP (Figure 7A). As expected, epinephrine
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increased phosphorylation of the cAMP-responsive element-

binding protein (CREB), indicating that Gs and cAMP production

are stimulated by epinephrine. In addition, when fed mice were

injected with epinephrine, YAP phosphorylation was significantly

increased in the heart, a physiological target organ of epineph-

rine (Figure 7B), suggesting a role of epinephrine in YAP regula-

tion in vivo.

Overexpression of the dopamine receptor 1 or the glucagon

receptor known to activate Gs also increased YAP phosphoryla-

tion (Table S1). To extend the notion that activation of Gs by

other GPCR agonists also increases YAP phosphorylation, we

examined the effect of dihydrexidine, an agonist for dopamine

receptor 1 and 5. Dihydrexidine treatment strongly increased

YAP phosphorylation in U2OS cells (Figure 7C). As the glucagon

receptor is expressed in hepatocytes, we therefore isolated

primary mouse hepatocytes and tested the effect of glucagon.

As shown in Figure 7D, glucagon treatment also increased

YAP phosphorylation. The above data support that activation

of Gs-coupled receptors results in YAP hyperphosphorylation

and inactivation under physiological conditions.

To further explore the role of cAMP signaling in the Hippo

pathway, we treated cells with forskolin, an activator of adenylyl

cyclase that results in cAMP production. We found that forskolin

effectively increased YAP phosphorylation (Figure 7E). The

cAMP-signaling cascade can activate protein kinase A (PKA)

or exchange protein activated by cAMP (Epac). We found that

the PKA-selective activator 6-Bnz-cAMP dramatically increased

YAP phosphorylation, whereas the effect of an Epac-selective

activator, 8-CPT-20-O-Me-cAMP, on YAP phosphorylation was

less dramatic (Figure S7B). Thus, Gs-coupled GPCR can induce

YAP phosphorylation mainly via cAMP and PKA.

Consistent with the increase in YAPphosphorylation, immuno-

fluorescence staining demonstrated that epinephrine and

forskolin induced an accumulation of cytoplasmic YAP (Fig-

ure S7C). We hypothesized that Gs-coupled signals might

compete with G12/13- and Gq/11-coupled signals. Indeed,

epinephrine and LPA antagonized each other’s effect on YAP

phosphorylation (Figure S7D). Consistent with the pathways

elucidated above, forskolin increased Lats1, but not MST2,

phosphorylation (Figures 7F and S7E). Moreover, epinephrine

increased Lats1 activity (Figure S7F). Our data suggest that

Gs-initiated signaling stimulates Lats kinase activity, therefore

increasing YAP/TAZ phosphorylation.

Differential Functions of Ga in the Regulation of YAP
Phosphorylation
Finally, we tested all Ga subunits for their ability to modulate YAP

phosphorylation by overexpression (Table S2). Because only the

GTP-bound Ga is active and directly participates in signaling, we

expressed constitutively active mutants (GTP-bound form) of Ga

subunits. We found that active Ga mutants decreased YAP

phosphorylation to varying degrees, with the exception of Gs

and Gz. Among the Ga subunits that decreased YAP phosphor-

ylation, G12, G13, Gq, G11, G14, and G15 were more potent

than Gi, Gt, and Go in repressing YAP phosphorylation. More-

over, expression of wild-type G12 or G13, but not wild-type

G11 or Gq, was sufficient to inhibit YAP phosphorylation. These

results indicate that G12/13 is the most potent inhibitor of the
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Hippo pathway, followed by Gq, G11, G14, and G15 (these

four belong to Gq/11 subfamily), whereas Gi, Gt, and Go (all

belong to Gi/o subfamily) are less potent. In contrast, expression

of the constitutively active Gs mutant increased YAP phosphor-

ylation. Together, these data further support differential roles of

various Ga—hence, GPCRs and their corresponding ligands in

regulation of the Hippo-YAP pathway (Figure 7G).

DISCUSSION

In this report, we demonstrate that serum contains an activity that

inhibitsYAP/TAZphosphorylationand increasesYAP/TAZactivity.

Based on biochemical characterizations, we identified LPA and

S1P as potent serum-borne signals regulating the Hippo-YAP

pathway. In addition, we have discovered that epinephrine,

glucagon, and dihydrexidine can stimulate YAP phosphorylation.

Therefore, the Hippo-YAP pathway can be both positively and

negatively regulated by diverse extracellular signals.

Hippo Pathway as a Downstream Branch of GPCR
Signaling
All signals that modulate the Hippo-YAP pathway identified in

this study turn out to be agonists for GPCRs. GPCRs regulate

a wide array of physiological functions and represent the major

targets for therapeutic drugs. Our study places the Hippo-YAP

pathway as a downstream branch of GPCR signaling. We

propose that Lats1/2 kinases are inhibited by G12/13-, Gq/11-,

and Gi/o-coupled receptors and are activated by Gs-coupled

receptors. Moreover, Rho GTPases and actin cytoskeleton

organization appear to be located between Ga and Lats1/2

(Figure 7G). The precise mechanism by which Rho or actin cyto-

skeleton controls Lats1/2 phosphorylation and activity requires

further investigation.

YAP and TAZ are transcription coactivators, and their

activation/inhibition may therefore play an important role in

GPCR-mediated gene regulation. Consistent with this model,

YAP/TAZ is required for the expression of some LPA-induced

genes, indicating a direct role of YAP/TAZ in the transcriptional

response of GPCR. YAP/TAZ play critical roles in cell prolifera-

tion and cell migration in response to LPA. Although the effects

of GPCR agonists on YAP/TAZ phosphorylation are transient

(Figures 1A, S3A, and S3B), the transient dephosphorylation

and nuclear localization effects are sufficient to induce gene

expression (Figure 4A), which may generate long-term physio-

logical effects, such as cell migration and proliferation (Figures

4B and 4C). GPCR activation has been linked to cell proliferation,

and many mechanisms have been proposed (Dorsam and

Gutkind, 2007). Gq/11-, G12/13-, and Gi/o-coupled receptors

usually show stimulatory effects on cell proliferation. This is

consistent with their function on YAP/TAZ activation. The role

of Gs-coupled receptors in cell proliferation is rather complex,

although activation of Gs and PKA is generally associated with

growth inhibition (Stork and Schmitt, 2002). Inhibition of YAP/

TAZ activity by Gs-coupled receptor signaling may lead to

growth inhibition in some types of cells. We noticed that basal

YAP/TAZ activity varies significantly across different cell lines

(F.-X.Y. and K.-L.G., unpublished data), and thus YAP/TAZ

may not respond to Gs-coupled signaling when basal activity



is low (highly phosphorylated), and an alternative signaling may

promote cell proliferation.

Complexity of Hippo-YAP Regulation
The regulation of the Hippo-YAP pathway by multiple signals is

not surprising, given the important role of this pathway in cell

proliferation and apoptosis—hence, organ size control and

tumorigenesis. Multiple regulators may coordinate with each

other to fine-tune physiological and pathological processes.

This scenario is similar to MAP kinases or PI3 kinases, which

are regulated by large numbers of growth factors via receptor

tyrosine kinases (RTK) and other receptors. It is worth noting

that YAP phosphorylation is not affected by the RTK ligands

tested (Figure S1).

Our results suggest that the upstream signals for the Hippo-

YAP pathway are highly redundant (Figure 7G). GPCRs repre-

sent the largest class of cell surface receptors and can couple

to different G proteins (Figure 7G and Table S1). It is likely that

many ligands acting through these G proteins will similarly

modulate Lats1/2 kinases and YAP/TAZ activity.

Regulation of Hippo-YAP by GPCR can be rather complex due

to the presence of multiple receptors for a single agonist. For

example, LPA has at least six receptors, which can be coupled

to different G proteins. Therefore, it is possible that one ligand

may increase YAP phosphorylation in one cell type but decrease

YAP phosphorylation in another cell type depending on which

receptor is dominantly expressed and which Ga is coupled to

the receptor in that particular cell type. We reason that the high

redundancy and complexity may hinder genetic efforts to isolate

upstream signals and receptors for the Hippo-YAP pathway

because knockout or knockdown of a single GPCR may not

significantly affect the Hippo-YAP pathway.

Implication of GPCR-YAP Signaling in Organ Size
and Cancer
Organ size control is a fundamental issue in biology, and final

organ size is determined both intrinsically and extrinsically. The

identification of GPCR ligands as Hippo pathway regulators

opens new possibilities to explore the role of the Hippo pathway

in organ size control. It is possible that certain GPCR-activating

hormones play central roles in organ size control through the

Hippo pathway. Depending on the distribution of ligands and

receptors, the signaling fromGPCR to Hippo pathwaymay regu-

late organ size in a tissue-specific manner. Indeed, it has been

shown that knockout of gprc6a in Leydig cells reduces testis

size (Oury et al., 2011). Gprc6a is able to activate Gq (Kuang

et al., 2005; Wellendorph et al., 2005), and it is possible that

YAP/TAZ activity is compromised in gprc6a knockout cells and

contributes to the small organ size phenotype. The Hippo-YAP

pathway also plays an important function in the nervous system

(Cao et al., 2008). The effect of a dopamine receptor agonist

on YAP activity demonstrated in this study also indicates that

the Hippo-YAP pathway could be dynamically regulated by

neurotransmitters. Therefore, it is also possible that a neuroen-

docrinemechanism is involved in organ size control. Conversely,

YAP may play a critical role in the nervous system and neuronal

activity. Future studies are needed to address these important

biological issues.
Elevated YAP/TAZ nuclear localization is observed in many

types of human cancers (Chan et al., 2008; Overholtzer et al.,

2006; Steinhardt et al., 2008; Zender et al., 2006; Zhao et al.,

2007), but the mechanism behind YAP/TAZ activation in cancer

is largely unknown. The connection between GPCR and the

Hippo pathway revealed by this study may provide an explana-

tion for YAP/TAZ activation in certain tumors. GPCR signaling

plays important roles in cancer development as both familial

and somatic activating mutations of GPCRs have been linked

to human cancer (Dorsam and Gutkind, 2007). Recently, GPCR

mutations have been identified in a wide range of human cancer

specimens (Kan et al., 2010; Prickett et al., 2011). We have

demonstrated here that transgenic expression of LPA receptors

increases YAP/TAZ activity and that the oncogenic activity of

YAP/TAZ may contribute to the hyperplasia and tumor pheno-

type in these mice. Mutations of G proteins are also linked to

cancer. For instance, activating mutations of Gq and G11 are

frequently associated with uveal melanoma, the most common

tumor in the eye (Van Raamsdonk et al., 2010). In fact, �83%

of uveal melanoma have activating mutations in either Gq or

G11 in a mutually exclusive manner. Based on our study, one

may predict that constitutive activation of Gq or G11 in uveal

melanomas results in abnormal YAP activation, which then

contributes to uveal melanoma development. Future investiga-

tion to determine the function of YAP/TAZ activation in the devel-

opment of uveal melanoma or other GPCR mutation-containing

cancers may provide new insights into the mechanism of tumor-

igenesis and possibly new therapeutic targets. We hypothesize

that inhibition of YAP/TAZ will be a new approach to treat human

cancers caused by dysregulated Rho GTPase, G-proteins,

GPCRs or their agonists.

EXPERIMENTAL PROCEDURES

Cell Culture

All cell lines were maintained at 37�C with 5% CO2. Detailed medium compo-

sition is shown in Supplemental Information. For serum starvation, cells were

incubated in DMEM or DMEM/F12 without other supplements. Detailed

culture conditions are described in Extended Experimental Procedures.

Transfection

Cells were transfected with plasmid DNA using PolyJet DNA In Vitro Tranfec-

tion Reagent (Signagen Laboratories) according to manufacturer’s instruc-

tions. siRNAs were delivered into cells using RNAiMAX (Invitrogen) according

to manufacturer’s instructions. Sources of plasmids used are described in

Extended Experimental Procedures.

Immunoprecipitation and Immunoblotting

Cells were lysed usingmild lysis buffer. Cell lysates were centrifuged for 10min

at 4�C, and supernatants were used for immunoprecipitation. Immunoprecip-

itates were washed four times with lysis buffer, and proteins were eluted with

SDS-PAGE sample buffer. Immunoblotting was performed using standard

protocol. Information for antibodies and phos-tag-containing gels is shown

in Extended Experimental Procedures.

Immunofluorescence Staining

HEK293A or MCF10A cells were fixed with 4% paraformaldehyde-PBS for

15 min. Following permeabilization and blocking, cells were incubated with

primary antibodies overnight at 4�C. Secondary antibodies used were Alexa

Fluor 488 or 555 (Invitrogen, 1:1,000 dilution). Samples were mounted using

ProLongGoldantifade reagentwithDAPI (Invitrogen), and immunofluorescence

was detected using Olympus confocal microscopy. For paraffin-embedded
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tissues from control or LPAR transgenic mammary glands or tumors, sections

were prepared and subjected for immunostaining following deparaffinization,

hydration, and antigen retrieval. Detailed methods are described in Extended

Experimental Procedures.

Kinase Assay

Immunoprecipitated MST1 was subjected to a kinase assay in the presence of

500 mM cold ATP, 10 mCi [g-32P]ATP, and 1 mg of GST-Mob. The reaction

mixtures were incubated for 30 min at 30�C, terminated with SDS sample

buffer, and subjected to SDS-PAGE and autoradiography. Lats1 or HA-

Lats2 kinase assays were performed similarly but using GST-YAP as

substrates in the absence of [g-32P]ATP. The phosphorylation of GST-YAP

at S127 was determined by immunoblotting using pYAP antibody. Detailed

methods are described in Extended Experimental Procedures.

RNA Extraction, Reverse Transcription, and Real-Time PCR

RNA samples were prepared using RNeasy Plus mini kit (QIAGEN). Reverse

transcription was performed using iScript reverse transcriptase (Bio-Rad).

Real-time PCR was performed using KAPA SYBR FAST qPCR master mix

(Kapa Biosystems). Detailed methods and information for primers are

described in Extended Experimental Procedures.

RNA Interference

Lentiviral shRNAs were obtained from Sigma Aldrich. ShRNA plasmids

together with pMD2.G and psPAX2 were used to produce virus in 293T cells.

ON-TARGET plus SMARTpool siRNAwere purchased from Dharmacon. Infor-

mation for shRNAs is described in Extended Experimental Procedures.

Cell Proliferation Assay

HEK293A cells (expressing control shRNA or YAP/TAZ shRNA, 2 3 105) in

serum-free media were maintained in the presence or absence of 10 mM

LPA for 1, 2, or 3 day. Cell numbers were determined daily using a cell counter

(Bio-Rad). LPA was replenished every day.

Cell Migration Assay

Cell migration assay was performed using BD Falcon Cell culture inserts for

24-well plates with 8.0 mm pore filter according to manufacturer’s instructions.

Detailed methods are described in the Extended Experimental Procedures.

Epinephrine Injection

A detailed protocol for epinephrine injection experiments is shown in the

Extended Experimental Procedures.

Lipid Extraction

A detailed protocol for lipid extraction from serum is shown in the Extended

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

seven figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2012.06.037.
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and Bräuner-Osborne, H. (2005). Deorphanization of GPRC6A: a promiscuous

L-alpha-amino acid receptor with preference for basic amino acids. Mol. Phar-

macol. 67, 589–597.

Wettschureck, N., and Offermanns, S. (2005). Mammalian G proteins and their

cell type specific functions. Physiol. Rev. 85, 1159–1204.

Xu, M.Z., Yao, T.J., Lee, N.P., Ng, I.O., Chan, Y.T., Zender, L., Lowe, S.W.,

Poon, R.T., and Luk, J.M. (2009). Yes-associated protein is an independent

prognostic marker in hepatocellular carcinoma. Cancer 115, 4576–4585.

Xu, Y., Stamenkovic, I., and Yu, Q. (2010). CD44 attenuates activation of the

hippo signaling pathway and is a prime therapeutic target for glioblastoma.

Cancer Res. 70, 2455–2464.

Zender, L., Spector, M.S., Xue, W., Flemming, P., Cordon-Cardo, C., Silke, J.,

Fan, S.T., Luk, J.M., Wigler, M., Hannon, G.J., et al. (2006). Identification and

validation of oncogenes in liver cancer using an integrative oncogenomic

approach. Cell 125, 1253–1267.

Zhang, N., Bai, H., David, K.K., Dong, J., Zheng, Y., Cai, J., Giovannini, M., Liu,

P., Anders, R.A., and Pan, D. (2010). The Merlin/NF2 tumor suppressor

functions through the YAP oncoprotein to regulate tissue homeostasis in

mammals. Dev. Cell 19, 27–38.

Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu,

J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is

involved in cell contact inhibition and tissue growth control. Genes Dev. 21,

2747–2761.

Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y.,

Chinnaiyan, A.M., et al. (2008). TEADmediates YAP-dependent gene induction

and growth control. Genes Dev. 22, 1962–1971.

Zhao, B., Li, L., Lei, Q., and Guan, K.L. (2010a). The Hippo-YAP pathway in

organ size control and tumorigenesis: an updated version. Genes Dev. 24,

862–874.

Zhao, B., Li, L., Tumaneng, K., Wang, C.Y., and Guan, K.L. (2010b).

A coordinated phosphorylation by Lats and CK1 regulates YAP stability

through SCF(beta-TRCP). Genes Dev. 24, 72–85.

Zhao, B., Li, L., Wang, L., Wang, C.Y., Yu, J., and Guan, K.L. (2012). Cell

detachment activates the Hippo pathway via cytoskeleton reorganization to

induce anoikis. Genes Dev. 26, 54–68.

Zhou, D., Conrad, C., Xia, F., Park, J.S., Payer, B., Yin, Y., Lauwers, G.Y.,

Thasler, W., Lee, J.T., Avruch, J., and Bardeesy, N. (2009). Mst1 and Mst2

maintain hepatocyte quiescence and suppress hepatocellular carcinoma

development through inactivation of the Yap1 oncogene. Cancer Cell 16,

425–438.
Cell 150, 780–791, August 17, 2012 ª2012 Elsevier Inc. 791


	Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling
	Introduction
	Results
	Serum Induces Dephosphorylation and Nuclear Localization of YAP
	Identification of LPA as a YAP-Activating Component in Serum
	LPA and S1P Stimulate YAP/TAZ Activity
	YAP and TAZ Are Involved in LPA-Induced Gene Expression, Cell Migration, and Cell Proliferation
	LPA Inhibits Lats1/2 Kinase Activity
	LPA/S1P Act through G12/13-Coupled Receptors and Rho to Induce YAP/TAZ Dephosphorylation
	Regulation of YAP Phosphorylation by GPCRs
	Differential Functions of Gα in the Regulation of YAP Phosphorylation

	Discussion
	Hippo Pathway as a Downstream Branch of GPCR Signaling
	Complexity of Hippo-YAP Regulation
	Implication of GPCR-YAP Signaling in Organ Size and Cancer

	Experimental Procedures
	Cell Culture
	Transfection
	Immunoprecipitation and Immunoblotting
	Immunofluorescence Staining
	Kinase Assay
	RNA Extraction, Reverse Transcription, and Real-Time PCR
	RNA Interference
	Cell Proliferation Assay
	Cell Migration Assay
	Epinephrine Injection
	Lipid Extraction

	Supplemental Information
	Acknowledgments
	References


